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Vector Norms

a p—horm:

1
Ixlly = (xq [P + 22 P + 4 |2 [P)P

subjecttop = 1

LWhat is the shape of |[x|[, = 1 ?
W Properties?
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Norm

Definition (Norm)

O A function f: R"™ — R is a norm if
1. f(x) =20, f(x) =0 < x = 0 (positivity)
2. f(ax) = |a|f(x), Va € R (homogeneity)
3 fx+y) < f(x)+ f(y) (triangle inequality)
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1-norm and 2—norm

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani



Vector Norms

a 1-norm(ly):

Ixlls = (g + [x2] + o+ x5 )

O What is the shape of ||x||; = 1?

O The distance between two vectors under the [; norm is also referred
to as the Manhattan Distance.

L Properties?

4

Example A

[, distance between (0,1) and (1,0)? ]
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Norm Derivations

Q Square of [,

(dllxll3 _
- dx, 1
1
. dllx|3
2 = ZXZ
dx,
X =
S
[ X0
x5 = xf + x5 + -+ x7 dllx|l3
= 2x,
L dxn
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Norm Derivations

dllxll, _ X1

dxy 2 +x2+ ..+ x,zl)%
dllxll; _ X2

L (2 +x2+ .+ x,zl)%
dllxll, _ Xn

dxn (2 +x2+4 ..+ xﬁ)%



Norm Comparisons

[, norm
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Square [, norm
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L1 and L2 norm comparisons

Q
I
|
dp(B.Q) =5 :
L4
dr(R.Q) = 7 :
l
[
|
P 3
dL,(w)
L,(w) dw L,(w)
11 1125
1_
1 1w Wi 5 5 w,
-1
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L1 and L2 norm comparisons

O Robustness is defined as resistance to outliers in a dataset. The
more able a model is to ighore extreme values in the data, the
more robust it is.

O Stability is defined as resistance to horizontal adjustments. This
is the perpendicular opposite of robustness.

a0 Computational difficulty
Q Sparsity
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min”xlll or2»
x

A T2 subject to Ax = b \4‘ T2

[, reqularization [, reqularization
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Vector Norms

a oo—norm(ly)(max norm):

lo = max(|xq], |x2], ..o, [x,])

dWhat is the shape of |x|, = 17
dProperties?
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Vector Norms

1
Q =—norm(l1)
2 2

O What is the shape of |x|1 = 17
2

UProperties?
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Vector Norms

0 O-norm(l,):

1
n a n
Ixllo = lim, lxlle = (Zw) = > 1o ()
k=1 k=1

4 0-norm, defined as the number of non-zero elements in a
vector, is an ideal quantity for feature selection. However,
minimization of 0-norm is generally regarded as a
combinatorially difficult optimization

Qlxllo = 2x;201
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Vector Norms

QO Is O—norm a valid norm?

O What is the shape of ||x||, = 17?

Examples

= [, distance between (0,0) and (0,5)?
= [, distance between (1,1) and (2, 2)?
= (username, password)
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Vector Norms

Class Activity

= [, distance between (0,0) and (0,5)?
= [, distance between (1,1) and (2, 2)?
= (username, password)

i: (=]

Or go to the below link
https://forms.gle/xFHSDKJDg1KoL4Kx6

Timer: (2:30 minutes)
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https://forms.gle/xFHSDKJDq1KoL4Kx6

Vector Norms

Examples

= [, distance between (0,0) and (0,5)?
= [, distance between (1,1) and (2,2)?
= (username, password)

When [, is 0, then we can infer that username and password is a match and we
can authenticate the user.

20
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Vector Norms Shapes




Norms and Convexity

Q Forp =1, L, norm is convex

llxlly =1 lIxllz =1 llxllp =1 lIxlleo =1
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Convex function

= A function is convex iff its epigraph is a convex set.
= Epigraph or supergraph

epif = {(z,p) : 2 €R", p € R, p > f(z)} CR"™

F((1-0)xO +0xM) < (1-0)F (xO) +0f (xV), Vo e]0.1]




Convex and Concave Function

g(+) 4 QR

Convex Concave

Vv
W

second derivative is nonnegative on its entire domain



Convex Relaxation
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Sparse Applications

o Alternative viewpoint: We try to find the sparsest solution which
explains our noisy measurements

min||x||,, subject to ||Ax — bl|, < €
X

O Here, the [,-norm is a shorthand notation for counting the
number of non-zero elements in x.

nxl nxm
measurements

r nonzero
entries,
r<<m
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Sparse Solution

Q [y optimization is np—hard.
O Convex relaxation for solving the problem.

min]lxl; min]lxl,

subject to ||[Ax — b]|l, < € subject to ||[Ax — bl|, <€

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani 27



L1-L2 norm inequality

Theorem

For all x € RY;

Proof

ol Y loil = X o+ 3l o
i i i ij
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Max norm inequality

Theorem

For all x € R%:
x|, < [1xl], < d|lxl|

|Ix1| < |lxl|, < Vd|lxI|
Proof
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Conclusion

0 By a normed linear space (briefly normed space) is meant a real

IL.

111

Iv.

or complex vector space E in which every vector x is associated
with a real number |x|, called its absolute value or norm, in such
a manner that the properties (a’) — (c¢') holds. That is, for any
vectors x,y C E and scalar ¢ we have:

x| =0
x| =0iif x = 0
ax| = |al|x|

x+y| < x|+ |yl
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Inner product and norm

Theorem

Take any inner product (-,-) and define f(x) = +/{x,x). Then f is a norm.

Proof

Note

Every inner product gives rise to a norm, but not every norm comes from an
inner product. (Think about norm 2 and norm max)
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Entry—wise matrix norms

Definition

b1

m n
14l = llvec(A)ll, = ZZ'“U'

i=1 j=1

Special Cases

O Frobenius (Euclidian, Hilbert Schmidt) norm:(p = 2)

IAllF = ZZ|CLU| = /trace(A*A)

i=1j=1

O Max norm (p = )
”A”max = rni?x|aij|

”A”sav = Z|Ai,j|

l;
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Frobenius (Euclidian, Hilbert Schmidt) norm

Theorem

Olnvariant under rotations (unitary operations = orthogonal matrices)

lAllr = |AU |l = ||UA|lg
IA + B|lZ = ||AllZ + |IBllZ + 2(A, B)
14*Allr = |1AA*|IF < |A]l2

1
m n 2
IAllF = (Z Z|aij|2> = /trace(A*A)
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Frobenius (Euclidean norm)

Theorem

Let by, by, -+, b,, denote the columns of B. Then

n n
14BIEs = ) 14bil> < ) IAIZIIBI = IAIZ1BIEs
i=1 i=1

Using Cauchy-Schawrtz Inequality
CE282: Linear Algebra
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Matrix norms induced by vector norms

Definition

141, = max 142l _ o 14zl
1%, 1% ||p-1

Theorem

1. ||Ax|] < ||A]||l|x|] for all vectors ||x]||

2. For all matrices A, B: ||AB|| < ||A|l||B]l
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Matrix norms induced by vector norms

Definition

L The norm of a matrix is a real number which is a measure of the magnitude of the

matrix.

J Norm 1:

U Norm max:

Example

CE282: Linear Algebra
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n
= ma  Slag
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SVD and Norm

O One common definition for the norm of a matrix is the Frobenius

norm:
lAlE= Y > a}

I=1m j=1n

O Frobenius norm can be computed from SVD
|A||E = z Y.* where p = min(n, m)
i=1:p

O So changes to a matrix can be evaluated by looking at changes
to singular values
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SVD and Norm

Theorem

1) Orthogonal matrices, they preserve the Euclidean norm

A:{I 2
2) ||Allz = sup | - l2 _
z#0 ||z]|2

ad
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Norms Compare

The 2-norm (spectral norm) of a matrix is the greatest distortion of the unit circle/sphere/hyper-
sphere. It corresponds to the largest singular value (or |eigenvalue| if the matrix is

symmetric/hermitian).
The Forbenius norm is the "diagonal" between all the singular values.
ie.
Al = 51+ [|Allp = /2 + 3+... +5F
(r being the rank of A).
Here's a 2D version of it: @ is any vector on the unit circle. Az is the deformation of all those

vectors. The length of the red line is the 2-norm (biggest singular value). And the length of the
green line is the Forbenius norm (diagonal).

s2

Forbenius norm: sqrt(s1”2 +s2/2)
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