

Norm Space

Linear Algebra

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u>

Maryam Ramezani maryam.ramezani@sharif.edu

P-norm

□ p−norm:

$$||x||_{p} = (|x_{1}|^{p} + |x_{2}|^{p} + ... + |x_{n}|^{p})^{\frac{1}{p}}$$

subject to $p \ge 1$

□What is the shape of $||x||_p = 1$? □Properties?

Definition (Norm)

□ A function $f: \mathbb{R}^n \to \mathbb{R}$ is a norm if 1. $f(x) \ge 0, f(x) = 0 \Leftrightarrow x = 0$ (positivity) 2. $f(\alpha x) = |\alpha|f(x), \forall \alpha \in \mathbb{R}$ (homogeneity) 3. $f(x + y) \le f(x) + f(y)$ (triangle inequality)

1-norm and 2-norm

u 1-norm
$$(l_1)$$
:

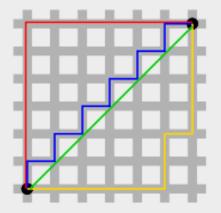
$$||x||_1 = (|x_1| + |x_2| + \dots + |x_n|)$$

- □ What is the shape of $||x||_1 = 1$?
- □ The distance between two vectors under the l_1 norm is also referred to as the Manhattan Distance.

□ Properties?

Example

 l_1 distance between (0, 1) and (1, 0)?



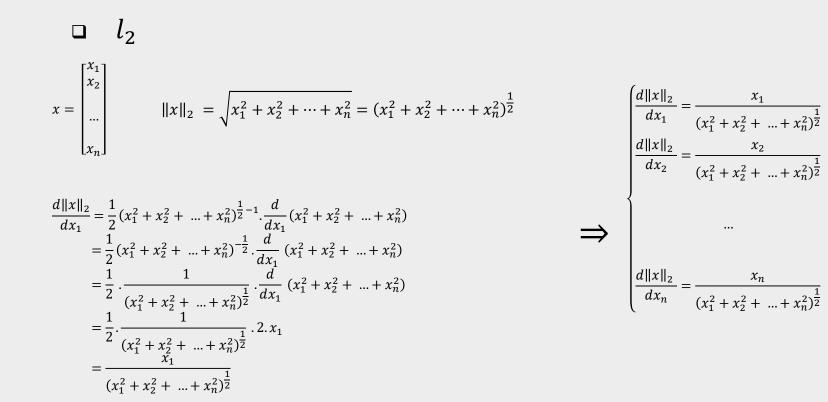
Norm Derivations

\Box Square of l_2

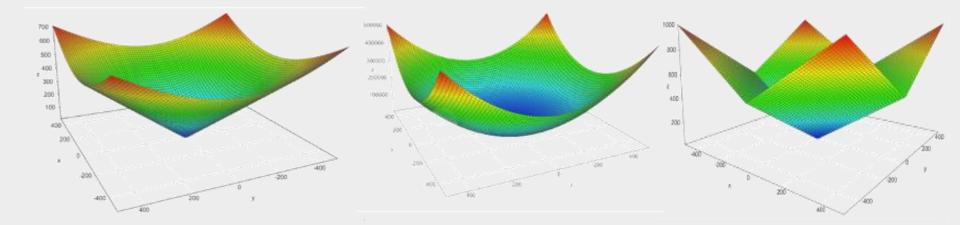
 $x = \begin{bmatrix} x_1 \\ x_2 \\ \\ \dots \\ \\ x_n \end{bmatrix}$

 $||x||_2^2 = x_1^2 + x_2^2 + \dots + x_n^2$

Norm Derivations



Norm Comparisons

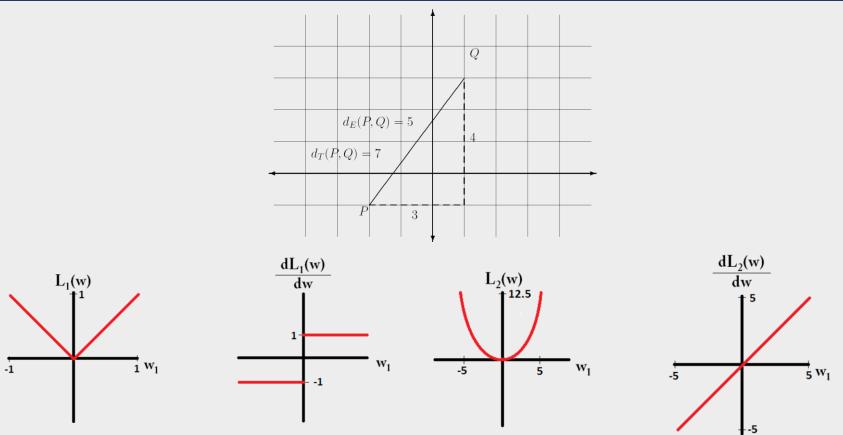


 l_2 norm

Square l_2 norm

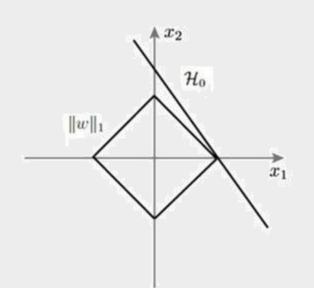
l_1 norm

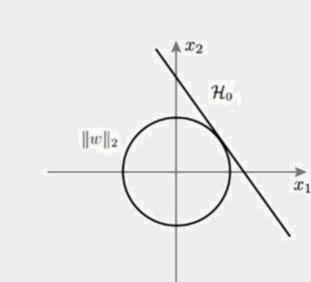
L1 and L2 norm comparisons



- Robustness is defined as resistance to outliers in a dataset. The more able a model is to ignore extreme values in the data, the more robust it is.
- Stability is defined as resistance to horizontal adjustments. This is the perpendicular opposite of robustness.
- Computational difficulty
- □ Sparsity

Why is l_1 supposed to lead to sparsity than l_2 ?





l_1 regularization

l_2 regularization

CE282: Linear Algebra

 $\min_{x} \|x\|_{1 \text{ or } 2}$,

subject to Ax = b

 $\Box \quad \infty - \operatorname{norm}(l_{\infty})(\max \text{ norm}):$

$$l_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|)$$

□What is the shape of $|x|_{\infty} = 1$? □Properties?

$$\Box \quad \frac{1}{2} - \operatorname{norm}(l_{\frac{1}{2}})$$

\Box What is the shape of $|x|_{\frac{1}{2}} = 1$?

□Properties?

D O-norm (l_0) :

$$\|x\|_{0} = \lim_{\alpha \to 0^{+}} \|x\|_{\alpha} = \left(\sum_{k=1}^{n} |x|^{\alpha}\right)^{\frac{1}{\alpha}} = \sum_{k=1}^{n} \mathbb{1}_{(0,\infty)}(|x|)$$

O-norm, defined as the number of non-zero elements in a vector, is an ideal quantity for feature selection. However, minimization of 0-norm is generally regarded as a combinatorially difficult optimization

$$\square \|x\|_0 = \sum_{x_i \neq 0} 1$$

□ Is 0-norm a valid norm?

\Box What is the shape of $||x||_0 = 1$?

Examples

- l_0 distance between (0,0) and (0,5)?
- l_0 distance between (1, 1) and (2, 2)?
- (username, password)

Vector Norms

Class Activity

- l_0 distance between (0,0) and (0,5)?
- l_0 distance between (1, 1) and (2, 2)?
- (username, password)

Or go to the below link https://forms.gle/xFHSDKJDq1KoL4Kx6

Timer: (2:30 minutes)

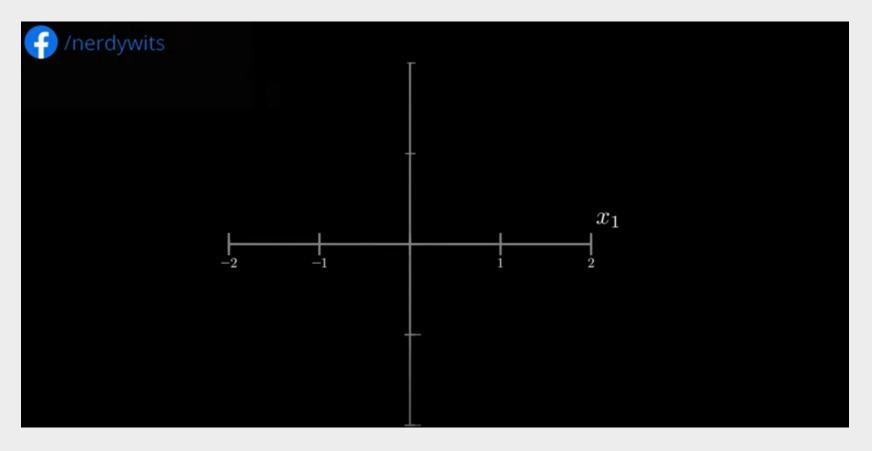
Vector Norms

Examples

- l_0 distance between (0, 0) and (0, 5)?
- l_0 distance between (1, 1) and (2, 2)?
- (username, password)

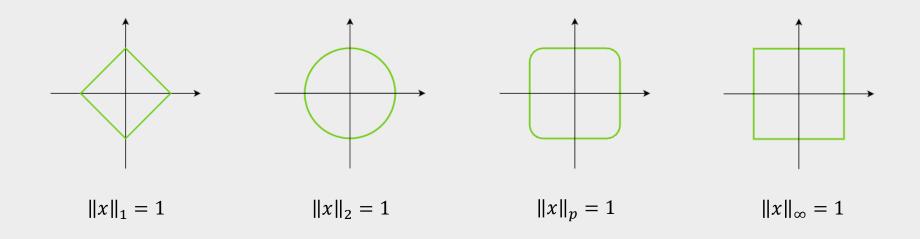
Solution 1 2 When l₀ is 0, then we can infer that username and password is a match and we can authenticate the user.

Vector Norms Shapes



Norms and Convexity

\Box For $p \geq 1$, l_p norm is convex

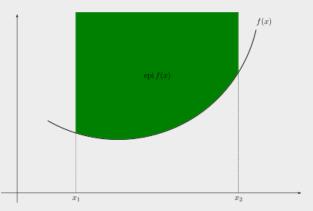


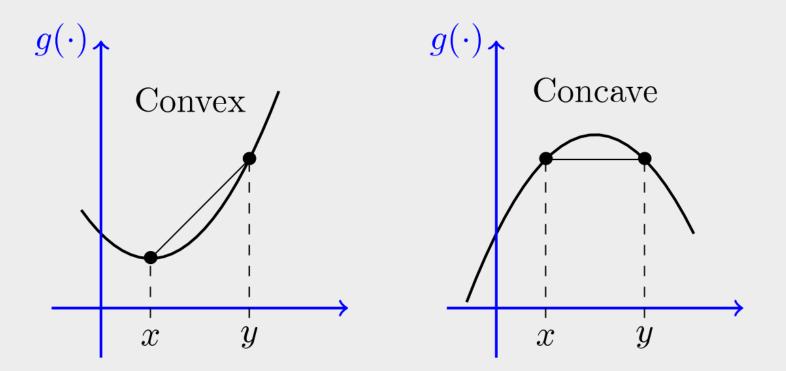
Convex function

- A function is convex iff its epigraph is a convex set.
- Epigraph or supergraph

$$\mathrm{epi} f = \{(x,\mu)\,:\, x\in \mathbb{R}^n,\, \mu\in \mathbb{R},\, \mu\geq f(x)\}\subseteq \mathbb{R}^{n+1}$$

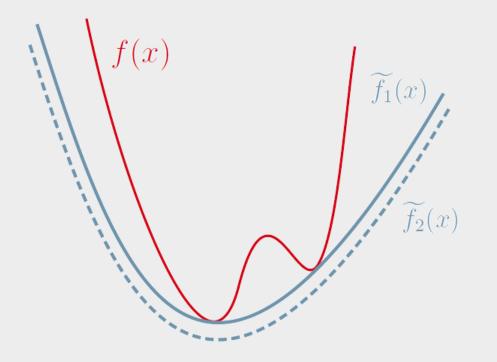
$$f\left((1- heta)x^{(0)}+ heta x^{(1)}
ight)\leq (1- heta)f\left(x^{(0)}
ight)+ heta f\left(x^{(1)}
ight), \quad orall heta\in [0,1]$$





second derivative is nonnegative on its entire domain

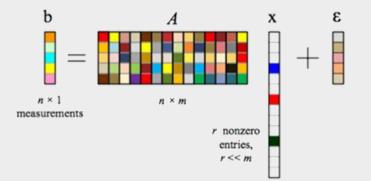
Convex Relaxation



Alternative viewpoint: We try to find the sparsest solution which explains our noisy measurements

$$\min_{x} \|x\|_{0}, \quad subject \ to \ \|Ax - b\|_{2} < \epsilon$$

 \Box Here, the l_0 -norm is a shorthand notation for counting the number of non-zero elements in x.



Sparse Solution

- \Box l_0 optimization is np-hard.
- □ Convex relaxation for solving the problem.

 $\min_{1} \|x\|_{1}$
subject to $\|Ax - b\|_{2} < \epsilon$

 $\min_{1} \|x\|_{0}$ subject to $\|Ax - b\|_{2} < \epsilon$

L1–L2 norm inequality

Theorem

For all $x \in \mathbb{R}^d$:

$$\left| |x| \right|_2 \le \left| |x| \right|_1 \le \sqrt{d} \left| |x| \right|_2$$

Proof

$$\sum_i |x_i| \sum_i |x_i| = \sum_i x_i^2 + \sum_{i
eq j} |x_i| \, |x_j|$$

Max norm inequality

Theorem

For all $x \in \mathbb{R}^d$:

$$\begin{aligned} \left| |x| \right|_{\infty} &\leq \left| |x| \right|_{1} \leq d \left| |x| \right|_{\infty} \\ \left| |x| \right|_{\infty} &\leq \left| |x| \right|_{2} \leq \sqrt{d} \left| |x| \right|_{\infty} \end{aligned}$$

Proof

Conclusion

- □ By a normed linear space (briefly normed space) is meant a real or complex vector space *E* in which every vector *x* is associated with a real number |x|, called its absolute value or norm, in such a manner **that the properties** (a') - (c') holds. That is, for any vectors $x, y \subset E$ and scalar α we have:
- i. $|x| \ge 0$
- *ii.* |x| = 0 *iif* $x = \vec{0}$
- *iii.* $|\alpha x| = |\alpha||x|$
- *iv.* $|x + y| \le |x| + |y|$

Theorem

Take any inner product $\langle \cdot, \cdot \rangle$ and define $f(x) = \sqrt{\langle x, x \rangle}$. Then f is a norm.

Proof

Note

Every inner product gives rise to a norm, but not every norm comes from an inner product. (Think about norm 2 and norm max)

Entry-wise matrix norms

Definition

$$\|A\|_{p,p} = \|vec(A)\|_p = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^p\right)^{\frac{1}{p}}$$

Special Cases

□ Frobenius (Euclidian, Hilbert Schmidt) norm:(p = 2) $\|A\|_{F} = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}\right)^{\frac{1}{2}} = \sqrt{trace(A^{*}A)}$

 \Box Max norm ($p = \infty$)

$$\|A\|_{max} = \max_{ij} |a_{ij}|$$

□ Sum-absolute-value norm

$$\|A\|_{sav} = \sum_{i,j} |A_{i,j}|$$
Hamid R. Rabiee & Maryam Ramez

CE282: Linear Algebra

38

Theorem

Invariant under rotations (unitary operations = orthogonal matrices)

$$||A||_F = ||AU||_F = ||UA||_F$$

$$||A + B||_F^2 = ||A||_F^2 + ||B||_F^2 + 2\langle A, B \rangle$$

$$||A^*A||_F = ||AA^*||_F \le ||A||_F^2$$

$$||A||_{F} = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}\right)^{\frac{1}{2}} = \sqrt{trace(A^{*}A)}$$

Frobenius (Euclidean norm)

Theorem

Let b_1, b_2, \dots, b_n denote the columns of B. Then $\|AB\|_{HS}^2 = \sum_{i=1}^n \|Ab_i\|^2 \le \sum_{i=1}^n \|A\|^2 \|b_i\|^2 = \|A\|^2 \|B\|_{HS}^2$

Using Cauchy-Schawrtz Inequality

Matrix norms induced by vector norms

Definition

$$\|A\|_{p} = \max_{\vec{x}\neq\vec{0}} \frac{\|A\vec{x}\|_{p}}{\|\vec{x}\|_{p}} = \max_{\|\vec{x}\|_{p}=1} \|A\vec{x}\|_{p}$$

Theorem

1. $||Ax|| \le ||A|| ||x||$ for all vectors ||x||

2. For all matrices $A, B: ||AB|| \le ||A|| ||B||$

Matrix norms induced by vector norms

Definition

- □ The norm of a matrix is a real number which is a measure of the magnitude of the matrix.
- **Norm** 1:

$$\|A\|_1 = \max_{1 \le j \le n} \left(\sum_{i=1}^n |a_{ij}| \right)$$

□ Norm max:

$$\|A\|_{\infty} = \max_{1 \le i \le n} \left(\sum_{j=1}^{n} |a_{ij}| \right)$$

Example

$$B = \begin{bmatrix} 5 & -4 & 2 \\ -1 & 2 & 3 \\ -2 & 1 & 0 \end{bmatrix}$$

One common definition for the norm of a matrix is the Frobenius norm:

$$\|A\|_F^2 = \sum_{i=1:m} \sum_{j=1:n} a_{ij}^2$$

□ Frobenius norm can be computed from SVD

$$||A||_{\rm F}^2 = \sum_{i=1:p} \sum_i^2 where \ p = \min(n,m)$$

So changes to a matrix can be evaluated by looking at changes to singular values

Theorem

1) Orthogonal matrices, they preserve the Euclidean norm

2)
$$||A||_2 = \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2} = \sigma_1$$

Norms Compare

The 2-norm (spectral norm) of a matrix is the greatest distortion of the unit circle/sphere/hypersphere. It corresponds to the largest singular value (or |eigenvalue| if the matrix is symmetric/hermitian).

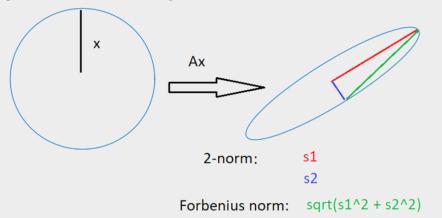
The Forbenius norm is the "diagonal" between all the singular values.

i.e.

$$||A||_2 = s_1 \;\;,\;\; ||A||_F = \sqrt{s_1^2 + s_2^2 + \ldots + s_r^2}$$

(r being the rank of A).

Here's a 2D version of it: x is any vector on the unit circle. Ax is the deformation of all those vectors. The length of the red line is the 2-norm (biggest singular value). And the length of the green line is the Forbenius norm (diagonal).



- □ Linear Algebra and Its Applications, David C. Lay
- Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares
- □ https://www.youtube.com/watch?v=76B5cMEZA4Y